TOC: Struct Eqn Modeling
Introduction
Structural Equation Modeling: A Multidisciplinary Journal, 24(2)
Novel Approaches in Mixture Modeling
–Gitta Lubke & Kevin J. Grimm [Publisher] [Google Scholar]
An Empirical Assessment of the Sensitivity of Mixture Models to Changes in Measurement
–Veronica T. Cole, Daniel J. Bauer, Andrea M. Hussong & Michael L. Giordano [Publisher] [Google Scholar]
Measurement Invariance and Differential Item Functioning in Latent Class Analysis With Stepwise Multiple Indicator Multiple Cause Modeling
–Katherine E. Masyn [Publisher] [Google Scholar]
Using Bayesian Statistics to Model Uncertainty in Mixture Models: A Sensitivity Analysis of Priors
–Sarah Depaoli, Yuzhu Yang & John Felt [Publisher] [Google Scholar]
Power and Type I Error of Local Fit Statistics in Multilevel Latent Class Analysis
–Erwin Nagelkerke, Daniel L. Oberski & Jeroen K. Vermunt [Publisher] [Google Scholar]
Assessing Model Selection Uncertainty Using a Bootstrap Approach: An Update
–Gitta H. Lubke, Ian Campbell, Dan McArtor, Patrick Miller, Justin Luningham & Stéphanie M. van den Berg [Publisher] [Google Scholar]
Model Selection in Finite Mixture Models: A k-Fold Cross-Validation Approach
–Kevin J. Grimm, Gina L. Mazza & Pega Davoudzadeh [Publisher] [Google Scholar]
Dynamic Latent Class Analysis
–Tihomir Asparouhov, Ellen L. Hamaker & Bengt Muthén [Publisher] [Google Scholar]
A Comparison of Methods for Uncovering Sample Heterogeneity: Structural Equation Model Trees and Finite Mixture Models
–Ross Jacobucci, Kevin J. Grimm & John J. McArdle [Publisher] [Google Scholar]
Pattern Mixture Models for Quantifying Missing Data Uncertainty in Longitudinal Invariance Testing
–Sonya K. Sterba [Publisher] [Google Scholar]
Studying the Strength of Prediction Using Indirect Mixture Modeling: Nonlinear Latent Regression with Heteroskedastic Residuals | Open Access
–Johanna M. de Kort, Conor V. Dolan, Gitta H. Lubke & Dylan Molenaar [Publisher] [Google Scholar]