The role of direct versus indirect experience in the attitude-behavior consistency issue is reviewed. Using a new communications model, the authors extend the direct/indirect experience paradigm to a common marketing scenario: product trial versus product advertising. The specific contributions of attitude strength and type of behavior are examined, and results show that when attitudes are based on trial they predict purchase very well. When attitudes are based on advertising, however, attitude-behavior consistency is significantly reduced. Implications for when attitude models should be applied in marketing research and practice are discussed.

Attitude-Behavior Consistency: The Impact of Product Trial Versus Advertising

Do consumer attitudes predict consumer behaviors? According to traditional attitude theory the answer is "yes," consumers buy the brands and products they like best. However, mounting evidence indicates that attitudes are not very good predictors of overt behaviors. The purpose of the study reported here is to examine attitude-behavior (A-B) consistency in marketing situations.

BACKGROUND

The importance of the attitude concept dates back to the 1920s when behavioral scientists began the search for factors mediating between stimulus perception and overt behavior. Behavioralism, reinforcement, and genetic theories that implied a rudimentary S \rightarrow R process were deemed unsatisfactory in fully explaining complex social behaviors. Investigating the “inner man” gained momentum from studies in human verbal learning that showed important apperceptive skills (see for example Mead 1934). These phenomenological manipulations were seen as transforming primary perceptual units into verbal/symbolic units that mediated overt behavior (Anderson 1975). Such variables included cognitions, inferences, attitudes, and intentions, though early studies heavily emphasized the attitude concept. By 1954, Allport (p. 45) would describe attitudes as “the primary building stone in the edifice of social psychology,”

Definitions of attitude have varied markedly, but many stress its relationship to overt behavior. For example, Allport (1935) defined attitude as “a mental and neural state of readiness . . . exerting a directive and dynamic influence upon the individual’s response.” Doob (1947) called an attitude an “implicit response which . . . affects subsequent overt responses.” Green (1954) argued that “the concept of attitude implies a consistency or predictability of response,” and Campbell (1963) labeled an attitude an “acquired behavioral disposition.”

Not surprisingly, initial efforts in attitude research concentrated on developing valid and reliable measurement techniques (Guttman 1944; Likert 1932; Osgood, Succi, and Tannenbaum 1957; Thurstone 1928). Other issues of importance such as attitude formation, structure, and change were also examined in detail, often by

*Robert E. Smith is Associate Professor of Marketing, Indiana University. William R. Swinyard is Associate Professor of Marketing, Brigham Young University.

The authors thank the JMR reviewers for their thoughtful comments on a draft of this article.
using the diagnostic virtue of multiattribute models (Fishbein and Ajzen 1975; Wilkie and Pessemier 1973).

By the late 1960s, however, a major problem had developed in efforts to apply attitude models. In theory, because attitudes direct behavior, measures of the two variables should be highly correlated. However, review articles examining the A-B relationship often reported correlations that were very low. Wicker (1969), for example, concluded that "taken as a whole, these studies suggest that it is considerably more likely that attitudes will be unrelated or only slightly related to overt behaviors than that attitudes will be closely related to actions" (p. 65). The findings that attitudes do not always predict behavior have raised a major new question: "When will attitudes predict behavior?"

The question is important for marketing theory and practice because the attitude concept is heavily represented in consumer behavior models. Attitudes often serve as dependent variables in studies of promotional effects and as independent variables in predictions of brand choice. However, treatment of the A-B consistency issue in the marketing literature has largely been restricted to discussions of why A-B correlations are low. Factors considered include alternative choice models (Bettman 1981; Wright 1976), the low-involvement learning hypothesis (Krugman 1965), and specific measurement issues (Ryan and Bonfield 1975).

Though the factors identified in these studies are probably influential, their effects have not been organized, integrated, or empirically examined from a direct A-B consistency perspective. In marketing and social psychology, discussions of moderating factors are often after-the-fact explanations for low A-B correlations. For example, Wicker (1969) surveyed several factors hypothesized to moderate A-B consistency as summarized in Table 1. He concluded: "... owing to the absence of systematic research, the arguments for the significance of each factor are often plausible anecdotes and post hoc interpretations of the data (from Ehrlich 1969 and Wicker 1969)."

<table>
<thead>
<tr>
<th>Factor having influence</th>
<th>Probable nature of influence</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Personal factors:</td>
<td></td>
</tr>
<tr>
<td>A. Multidimensionality of and interrelationships between attitudes</td>
<td>A single attitude may appear to be inconsistent with a behavior because other, possibly competing, attitudes have not been measured.</td>
</tr>
<tr>
<td>B. Competing motives and habits</td>
<td>Underlying motives or habits might have a stronger influence in the behavior of interest than the attitude expected to mediate the behavior.</td>
</tr>
<tr>
<td>C. Verbal, intellectual, and social abilities</td>
<td>The individual might (wittingly or unwittingly) inaccurately articulate the attitude, could misunderstand the attitude measures, and/or lack knowledge or skills necessary to perform the given behavior.</td>
</tr>
<tr>
<td>D. Level of activity</td>
<td>Active individuals are perhaps more likely to behave consistently with their attitudes than those whose response to the environment is more passive.</td>
</tr>
<tr>
<td>II. Situational factors:</td>
<td></td>
</tr>
<tr>
<td>A. Social demand characteristics</td>
<td>Attitude measures are ordinarily taken in social settings which have demand characteristics which alter the expression of the attitude, and the settings surrounding the given behavior might differ.</td>
</tr>
<tr>
<td>B. Norms for acceptable attitudes and/or behavior</td>
<td>Behavioral norms or role requirements might contribute to inconsistencies between attitudes and attitude statements and between attitudes and behavior.</td>
</tr>
<tr>
<td>C. Availability of alternative behaviors</td>
<td>The actual or perceived opportunity for the given behavior might not arise or alternative behavior consistent with the attitude may be more easily performed.</td>
</tr>
<tr>
<td>D. Specificity of attitude objects</td>
<td>The stimulus in verbal attitude response situations tends to be very general whereas the stimulus in overt behavioral response situations tends to be highly specific.</td>
</tr>
<tr>
<td>E. Unexpected extraneous events</td>
<td>Inconsistency might result from unexpected events which intrude into, and disturb, an otherwise predictable attitude-behavior relationship.</td>
</tr>
<tr>
<td>F. Expected and/or actual consequences of the behavior</td>
<td>Responses to attitudinal and behavioral measures might be influenced by what the subject believes will follow as a result of the response.</td>
</tr>
</tbody>
</table>

*Decision-making theories (Bettman 1981; Wright 1976) explain low A-B correlations in terms of alternative choice models. Here, attitude-referal is only one of many choice strategies available to consumers. When cognitive-based attribute review models are employed (e.g., conjunctive, disjunctive, lexicographic, etc.) attitudes will be unlikely to predict purchase. In marketing communications theory, the general failure to validate the A-B sequence empirically has been explained by Krugman's (1965) low-involvement learning model. Here, consumers are hypothesized to suspend evaluation of trivial brands until after purchase and use.

Methodologists have also identified factors related to the A-B consistency issue. Some researchers believe that attitudes will predict behavior only when both measures are equivalent in terms of specificity. General measures of attitude toward the object (A_o) are unlikely to predict specific behaviors. For maximum predictive power, Fishbein and Ajzen (1975) recommend using a behavioral intention model that includes factors such as the expected consequences of the act (A_ee), social norms (SN), and motivation to comply with social norms (MC). From this perspective, variables such A_ee, SN, and MC can be viewed as factors moderating the A-B relationship (see for example Ryan and Bonfield 1975).
explanations" (p. 67). Wicker further suggested that the "greatest need in the attitude-behavior area is to operationalize and to test the contributions of the factors which have been offered as reasons for attitude-behavior consistency" (p. 67).

The first response to Wicker's challenge for direct empirical evidence came from a series of studies conducted by Fazio and Zanna (Fazio and Zanna 1977; Fazio and Zanna 1982; Fazio, Zanna, and Cooper 1978; Regan and Fazio 1977). These researchers sought to answer the question: "Is A-B consistency higher for people who have direct experience with the attitude-object than for people who only have indirect experience?" To address this question, Fazio, Zanna, and colleagues employed experimental designs whereby subjects acquired object-related information from either direct experience (trial) or indirect experience (verbal descriptions). A-B correlations were then computed for each group and compared. Results show correlational differences between the indirect-experience subjects and the direct-experience subjects which are as large as .20 and .54, respectively.

The A-B consistency effects of direct and indirect experience also have important implications for marketing theory and practice. Among consumers' direct experiences are product use from purchase, direct tests, sampling, and other evaluation behaviors. Consumers' indirect experiences include advertising exposure, personal selling presentations, exposure to displays, packages, and point-of-purchase material, word-of-mouth, etc. Better understanding of attitude responses resulting from such activities would contribute significantly to a better prediction of consumer behaviors.

HYPOTHESES

Recently, an integrated information response model has been proposed (Smith and Swinyard 1982) that is directly related to the A-B consistency effects of direct/indirect experience. According to this model (Figure 1) a common marketing situation directly analogous to direct/indirect experience is when consumers acquire product-related information from either trial or advertising.

This model suggests that acceptance of advertising claims will often be suppressed by consumer responses such as source derogation, counterarguing, and discounting. The resulting impoverished information base is more likely to generate uncertain attitudes than strongly held attitudes. To reduce this uncertainty consumers may engage in trial behaviors including purchase (when price or risk is low) or demonstrations (when price or risk is high). In these cases, trial purchase represents an information-gathering technique and therefore is not necessarily prefaced by much attitudinal development. Consequently, when lower order evaluations exist, measures of "attitudes" and trial behaviors will not be highly correlated.

Direct product trial, however, generates high levels of message acceptance because people rarely derogate themselves as sources. Trial therefore generates strong (higher order) attitudinal development that should correlate with behavioral measures at relatively high levels. Thus, the integrated information response model highlights two factors hypothesized to moderate A-B consistency: (1) attitude strength and (2) type of behavior (trial or commitment).

Attitude Strength

According to traditional attitude theory, evaluations can be strong to the extent they are extreme and/or confidently held. Extremity refers to the degree to which the attitude deviates from the neutral (indifference) point (Newcomb, Turner, and Converse 1965). In the expectancy-value (EV) model, for example, extremity is represented by the overall summated EV score (ΣEV). Similarly, affective extremity is the major dimension upon which global attitude scales are differentiated. Likert, semantic differential, and other attitude scales routinely partition respondents in terms of verbal (or numerical) labels (e.g., "strongly disagree/slightly disagree") that differentiate the response category from the neutral (indifference) point (e.g., "neither agree nor disagree").

Affective confidence refers to the conviction with which the evaluation is held (Bennett and Harrell 1975; Brim 1955; Smith 1982). That is, a person might decide, after reading advertisements for personal computers, that he or she prefers an Atari. Certainty about the validity of this preference might be low, however, because the advertising sources may be viewed as biased and untrustworthy. In contrast, the person might engage in extensive evaluation behaviors (product demonstrations, free trials, etc.) for several personal computers before establishing preferential feelings toward an Atari. Certainty about the validity of preferences based on these direct experiences would be high because belief in the validity of sensory experience is so basic, so fundamental, that it is rarely if ever questioned (Bem 1970).

Confidence has been linked conceptually to A-B consistency for some time. At the attribute level, Bennett

Figure 1

INTEGRATED INFORMATION RESPONSE MODEL

![Diagram](chart.png)

Source: Smith and Swinyard (1982).
and Harrell (1975) and Howard and Sheth (1969) have proposed a multiplicative expectancy value model that includes a confidence component (i.e., \(\Sigma ECV \)). The idea that this model should better capture the overall magnitude of the disposition has been supported by the finding of significant increases in predictive validity for the \(\Sigma ECV \) model (in comparison with the \(\Sigma EV \) model) when subjects are meaningfully differentiated in terms of confidence (Smith 1982). At the global level, confidence is usually measured by asking subjects to report their certainty in their attitudinal responses (Brim 1955; Warland and Sample 1973). In addition to being linked to A-B consistency, confidence has been linked empirically to the direct/indirect experience paradigm by Fazio and Zanna (1981). Surveying their findings, these researchers concluded, “Direct experience may produce an attitude that is better defined and more confidently held than an attitude formed through more indirect means” (Fazio and Zanna 1981, p. 182).

Accordingly, both attitude strength and A-B consistency should be meaningfully differentiated by the ad/trial treatment.

- \(H_1 \): Attitudes are more extreme and/or confidently held for subjects exposed to product trial than for subjects exposed to product advertising.
- \(H_2 \): A-B consistency is higher for subjects exposed to product trial than for subjects exposed to product advertising.

Type of Behavior

An important contribution of the integrated model is its ability to differentiate behaviors in terms of commitment. Behaviors that are high in commitment are those involving high economic, social, or psychological costs. According to this view, consumers are unlikely to make a committed decision without strongly held favorable attitudes. Thus, when foreseeable costs are high, consumers will require a greater amount of expected value (i.e., attitude) to trigger purchase. However, relatively inconsequential behaviors, such as a trial purchase for a low-cost item, are not related to expected value from the product. Instead, trial purchase is thought to be based on the expected value of direct experience as a credible information source. In these cases, firmly held attitudes toward the object may not exist before trial.

By cross-classifying behavioral commitment with attitude strength (Table 2), the integrated model can make specific predictions about the comparative levels of attitude-behavior consistency. When affect is lower order, consumers may or may not engage in trial purchase (Table 2, quadrant 1), and moderate to low A-B correlations are predicted. However, lower order affect is unlikely to have sufficient expected value to direct high cost or committed purchases (Table 2, quadrant 2). In these cases, low A-B consistency is predicted.

Consumers with higher order affect should be much more likely to reflect these feelings consistently in their behavior (Rosenberg 1960). Those with positive attitudes should readily perform a low-risk behavior such as trial, whereas those with negative attitudes should be less likely to spend money to try a disvalued product. In these cases (Table 2, quadrant 3) A-B consistency should be high. Even as the cost and commitment of the target behavior increase (Table 2, quadrant 4), moderate levels of A-B consistency should persist. This conclusion is based on the observation that consumers would be most unlikely to make a high-cost purchase of a brand they strongly dislike, but some consumers with strongly favorable attitudes would still engage in purchase.

The preceding discussion suggests that correlational consistency should be:

- \(H_3 \): Lowest for lower order affect with conation-commitment.
- \(H_4 \): Moderate for lower order affect with conation-trial.
- \(H_5 \): Moderate for higher order affect with conation-commitment.
- \(H_6 \): Highest for higher order affect with conation-trial.

These six hypotheses represent a test of the A-B consistency effects of the direct/indirect experience treatment. In addition, the specific variables of attitude strength and behavioral commitment can be inspected to identify their influence on A-B consistency. The wide range of affective development consequent to marketing efforts, and the variety of behaviors advocated by marketing communications, should make tests of these hypotheses noteworthy.

TEST METHOD

Procedure

Tests of the hypotheses were made by comparing audience response measures after either a direct trial experience or an exposure to advertising in a one-way analysis of variance experimental design. Earlier studies comparing direct and indirect experience have indicated that several criteria must be met in the selection of the product to be used in the test. The product must be unfamiliar to the subjects to avoid the confounding factors of past use or experience. The product must have salient attributes which can be evaluated by means of a trial. Because the subjects were to be college students, a well-chosen test product would be one appropriate for a stu-
dent market. A product which fulfilled these criteria was a salted snack food item (a cheese-filled pretzel) which had not yet been introduced into the region where the test was being conducted. This product was particularly appealing because professionally prepared print advertisements were available for it which added to the realism of the study.

The subjects were 79 undergraduate business students at a major western university. The initial belief that students were frequent users of snack food items was confirmed in a validity check with test subjects, 76% of whom had purchased snack foods within the preceding month. Further, because snack foods are often bought and eaten at school, the experiment took place in a somewhat realistic and unobtrusive setting.

Subjects were assigned randomly to treatment groups of six to eight persons. To minimize systematic error, the two experimental treatments were rotated among the six rooms and within the five research assistants employed to conduct the test. Each respondent was initially given a test booklet. Demand effects were reduced by means of a cover sheet which disclaimed any association with the advertiser or any concern with how the subjects evaluated the product. The experiment was described only as a study about snack foods.

The two pages following this cover sheet contained questions relating to snack food consumption and attitudes. When the subjects had completed these pages the experimental treatment was introduced and they either read an advertisement about the product or actually sampled it (the product was served in a bowl to subjects who did not see the package). Subjects were allowed three minutes for the test treatment and were then asked to answer the remaining questions.

Attitude Measures

Expectancy-value. The key attitude measure used in this study was a multiattribute expectancy-value model. This measure was employed because product evaluation is frequently viewed as a multiattribute decision process (Wilkie and Pessemier 1973). In addition, the diagnostic virtue of this model generates a detailed representation of attitude that can be used to identify strength of affective development. The actual multiattribute model used was the SECV representation proposed by Bennett and Harrell (1975), Dover and Olson (1977), and Smith (1982). Specifically, belief strength (E), belief confidence (C), and attribute evaluations (V) were collected for each of six attributes. Belief strength (E) was measured by asking subjects to indicate, "How likely do you think it is that (the product) has (product attribute)?"

Responses were recorded on a 7-point probability scale with response labels ranging from "zero likelihood," "not at all likely," . . . "extremely likely," to "certain." These responses were coded at equal-appearing intervals from zero to one (i.e., .0, .167, .333, . . ., .833, 1.0). This measure is consistent with conceptualizations of the belief strength component (Fishbein and Ajzen 1975) and with past operationalizations (Bennett and Harrell 1975; Bettman, Capon, and Lutz 1975).

The belief confidence (C) measure asked respondents to indicate their degree of certainty/uncertainty that their belief estimate was accurate. A verbally balanced 8-point scale with end points labeled "extremely uncertain" to "extremely certain" (coded 1 to 8) was used. Certainty labels were selected because past studies indicate these labels may work best (Katz 1944; Warland and Sample 1973). This measure is consistent with past conceptualizations and operationalizations of confidence (Bennett and Harrell 1975; Dover and Olson 1977; Smith 1982).

Attribute evaluations (V) were measured by asking, "When you are considering buying a salted snack food, how would you evaluate one that is (attribute)?" A 7-point adjective scale from "extremely bad" to "extremely good" was used to collect the measure (coded from -3 to +3). On the questionnaire, these measures (value extremity, belief strength, and belief confidence) were grouped by attribute for subject convenience. In addition, the subjects were provided a sample scale for each measure to familiarize them with the nature of the scales.

Semantic differentials. Though the diagnostic virtue of the multiattribute model aids the investigation of affect at the attribute level, it may not reflect the individual's total attitude toward the product. This problem could be expected to occur if attributes beyond the six measured in the study were used by respondents in evaluating the product. To take this possibility into account, a global attitude toward the object measure was included in the study. Subjects completed the statement, "I feel (test brand) is . . .," using four evaluative semantic differentials taken from Osgood, Suci, and Tannenbaum (1957). These scales were bipolar (good-bad, pleasant-unpleasant, agreeable-disagreeable, satisfactory-unsatisfactory) and were coded from -3 to +3. An average score was then computed for each respondent as a measure of overall attitude toward the object (A_obj). This procedure was selected because it has been shown to produce reliable and valid estimates of attitudes (Heise 1970).

Global measure. A second global attitude measure (A_g) was a balanced 7-point "appealingness" scale which requested subjects to indicate, "Overall, how appealing to you is (test brand) as a snack-food product?" A 7-point adjective scale (ranging from "extremely low appeal" to "extremely high appeal") was provided for their responses. This measure was selected because it has been used successfully in other attitude studies (Mazis, Ah-tola, and Klippel 1975) and it could be used as a referent for the attitudinal confidence measure. Specifically, sub-
jects were asked to indicate how certain or uncertain they were that their A_B response was accurate. Similar affective confidence measures have been used by Cantril (1946), Katz (1944), and Warland and Sample (1973). Responses for this variable (CA_C) were recorded on an 8-point scale with endpoints labeled "extremely uncertain"/"extremely certain" (coded 1 to 8).

Conative measures

Trial intentions. Subjects were asked to indicate their likelihood of buying the test product on a single-package basis. Because the test product was a low-cost item (35¢ at retail), intention to buy a package of the test product was considered a reasonable operationalization of conation-trial. Because the pretest showed that subjects purchased snack foods from grocery stores and/or vending machines, an intentions measure was included for both occasions. Thus, respondents were asked how likely they were to buy the new brand when it was available in stores (B_{LM}) or from vending machines (B_{VM}). Subjects responded on a verbally unbalanced likelihood scale with end points labeled "zero likelihood" to "certain" (coded 1 to 7). These conative measures parallel those used in past studies (Bennett and Harrell 1975; Dover and Olson 1977).

Commitment intentions. To increase the level of commitment associated with buying intentions, a measure was included that offered a case of the test product for half price (B_{LM}). Here, commitment was increased in terms of the financial cost ($4.20 versus 35¢) and the number of packages to be consumed (24 versus one). In addition, the reduced price made the buying intentions scale more consistent with the relative motivation level of the subjects.

This measure was operationalized with a question which asked, "How likely are you to buy a case of [test brand] at the reduced price?" Subjects were provided a 7-point likelihood scale with end points labeled "zero likelihood"/"certain" (coded 1 to 7).

Behavioral Measure

The final dependent measure (PUR) assessed actual choice of the test product. Again, a price reduction was provided (from 35¢ to 20¢) to keep this measure consistent with the intentions scales. The score recorded was the number of packages actually ordered in response to the instruction, "... as a participant in this study we can provide you with some (products) for 20 cents per ... if you want to buy any at 20 cents per package please provide your name and number of packages below."

ANALYSIS AND RESULTS

The first hypothesis predicted stronger attitudes for subjects in the trial condition. Affective extremity and/or affective confidence were identified as factors influential in determining attitudinal strength. Of the measures used in this study, A_{wem} and A_e reflect affective extremity, CA_C reflects confidence, and the ECV model reflects both dimensions. Analysis of variance was performed on these measures. The results (Table 3) indicate that attitudes are indeed stronger for the trial group and these effects hold at both the global and attribute levels. Therefore, H_1 is considered supported.

Hypothesis 2 predicted that trial subjects would exhibit higher A-B consistency than advertising subjects. To test this proposition correlation coefficients were computed between attitude measures (A_{wem} and $SECV$) and conative and behavioral measures for both treatment groups as shown in Table 4. The difference between these correlations was tested by using Fisher's r to Z transformation for independent samples. The results show reasonable support for H_2. Five of the eight correlations are significant at $p < .05$, one is marginally significant ($p = .08$), and two are nonsignificant. All of the correlations are higher for the trial group. On average, attitude measures explain more than three times as much variance in dependent measures for trial subjects (mean $r^2 = .36$) than for advertising subjects (mean $r^2 = .11$). These findings are also consistent with those of Fazio and Zanna (1981), providing cross-validation.

Hypotheses 3 through 6 require that subjects be partitioned into attitude strength categories. To calibrate these categories, $SECV$ scores were examined. The $SECV$ scores were used because these measures included both attitude extremity and confidence and, as these scores had the greatest range (-39 to 45), they represented the most discriminating measure of attitude strength. The

ANALYSIS AND RESULTS

The first hypothesis predicted stronger attitudes for subjects in the trial condition. Affective extremity and/or affective confidence were identified as factors influential in determining attitudinal strength. Of the measures used in this study, A_{wem} and A_e reflect affective extremity, CA_C reflects confidence, and the ECV model reflects both dimensions. Analysis of variance was performed on these measures. The results (Table 3) indicate that attitudes are indeed stronger for the trial group and these effects hold at both the global and attribute levels. Therefore, H_1 is considered supported.

Hypothesis 2 predicted that trial subjects would exhibit higher A-B consistency than advertising subjects. To test this proposition correlation coefficients were computed between attitude measures (A_{wem} and $SECV$) and conative and behavioral measures for both treatment groups as shown in Table 4. The difference between these correlations was tested by using Fisher's r to Z transformation for independent samples. The results show reasonable support for H_2. Five of the eight correlations are significant at $p < .05$, one is marginally significant ($p = .08$), and two are nonsignificant. All of the correlations are higher for the trial group. On average, attitude measures explain more than three times as much variance in dependent measures for trial subjects (mean $r^2 = .36$) than for advertising subjects (mean $r^2 = .11$). These findings are also consistent with those of Fazio and Zanna (1981), providing cross-validation.

Hypotheses 3 through 6 require that subjects be partitioned into attitude strength categories. To calibrate these categories, $SECV$ scores were examined. The $SECV$ scores were used because these measures included both attitude extremity and confidence and, as these scores had the greatest range (-39 to 45), they represented the most discriminating measure of attitude strength. The

Table 3

ANOVA OF ATTITUDINAL STRENGTH

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean: Advertising</th>
<th>Mean: Trial</th>
<th>d.f.</th>
<th>F ratio</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attitude:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. A_{wem}</td>
<td>.30</td>
<td>1.11</td>
<td>78</td>
<td>6.76</td>
<td>.01</td>
</tr>
<tr>
<td>2. A_e</td>
<td>3.74</td>
<td>4.58</td>
<td>78</td>
<td>7.24</td>
<td>.01</td>
</tr>
<tr>
<td>3. CA_C</td>
<td>5.95</td>
<td>6.78</td>
<td>78</td>
<td>8.18</td>
<td>.01</td>
</tr>
<tr>
<td>4. $SECV$</td>
<td>7.40</td>
<td>13.83</td>
<td>78</td>
<td>3.67</td>
<td>.05</td>
</tr>
</tbody>
</table>

Table 4

ATTITUDE-BEHAVIOR, ATTITUDE-CONATIVE CONSISTENCY BY TREATMENT GROUP

<table>
<thead>
<tr>
<th>Attitude measure</th>
<th>Conative-behavior measure</th>
<th>Advertising</th>
<th>Trial</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{wem}</td>
<td>B_{LM}</td>
<td>.353</td>
<td>.633</td>
<td>.05</td>
</tr>
<tr>
<td>A_{wem}</td>
<td>B_{STORE}</td>
<td>.694</td>
<td>.805</td>
<td>n.s.</td>
</tr>
<tr>
<td>A_{wem}</td>
<td>B_{CASE}</td>
<td>.334</td>
<td>.617</td>
<td>.05</td>
</tr>
<tr>
<td>A_{wem}</td>
<td>PUR</td>
<td>.177</td>
<td>.570</td>
<td>.01</td>
</tr>
<tr>
<td>$SECV$</td>
<td>B_{LM}</td>
<td>.275</td>
<td>.534</td>
<td>.08</td>
</tr>
<tr>
<td>$SECV$</td>
<td>B_{STORE}</td>
<td>.377</td>
<td>.670</td>
<td>.05</td>
</tr>
<tr>
<td>$SECV$</td>
<td>B_{CASE}</td>
<td>.165</td>
<td>.513</td>
<td>.05</td>
</tr>
<tr>
<td>$SECV$</td>
<td>PUR</td>
<td>.311</td>
<td>.417</td>
<td>n.s.</td>
</tr>
</tbody>
</table>
SECV scores were categorized via a quartile split. The group with the lowest scores (i.e., between −39 and +3.6), representing those subjects with the most negative evaluations of the product, were thus labeled as the negative higher order affect group. The next two quartiles represented subjects closest to mean and thus had the least directive (powerful) affect. Therefore, in a relative sense, quartile two (i.e., between +3.61 and +8.80) represents negative lower order affect and quartile three (i.e., between 8.81 and 20.00) represents positive lower order affect. Subjects with the strongest favorable affect (i.e., between 20.01 and 45) were categorized as the positive higher order affect group. These categories, drawn from the entire subject pool, represent preliminary empirical benchmarks for lower order and higher order affective development resulting from new product information.

These affective categories can be used to clarify several issues. First, the integrated model predicts that most advertising subjects will develop lower order affect and most trial subjects will develop higher order affect. An important variation is when consumers form higher order affect from advertising exposure (dotted arrow in Figure 1). These possibilities can be examined by cross-classifying the ad/trial treatment with the categories defined above. The results shown in Figure 2(a) demonstrate that 64% of the advertising subjects developed lower order affect. Thirty-six percent of advertising subjects and 65% of trial subjects formed higher order affect.

These results become more revealing when all four affective categories are crossed with the ad/trial treatment as shown in Figure 2(b). In total, only 8% of the advertising subjects formed positive higher order affect in comparison with 43% of trial subjects. The fact that both treatment conditions created similar amounts of negative higher order affect indicates that when advertising forms strong attitudes, those attitudes are often negative.

The affective categories developed from the SECV scores can also be used to examine H3 through H6 which require subjects to be partitioned in terms of attitude strength. To accomplish this, higher order (positive and negative) subjects were compared with lower order (positive and negative) subjects in terms of A-B consistency. The correlations between attitudes and conative/behavioral measures are reported in Table 5.
The affective categories compared in Table 5 include respondents assigned from both treatment groups, and thus the samples are not independent. Thus, there is no appropriate statistical test for the difference in these correlational pairs. Though these comparisons should be accepted with caution, two additional points should be made. First, the test of H_1 shows that affective strength (ΣECV) was meaningfully differentiated in the subject pool, demonstrating that different levels of attitude strength are being compared in Table 5. Second, A-B consistency (Table 4) covaries with attitude strength (Table 3), suggesting the possibility of the relationship detailed in Table 5. Thus, though the results are not conclusive, they can be viewed as further evidence of the relationship between attitude strength and A-B consistency.

Conative results show the correlations between higher order affect and trial intentions (H_{I_1}) to be highest (mean $r = .74$). Correlations between higher order affect and committed intentions (H_{I_2}) are moderate (mean $r = .62$). These results show a relatively strong tendency for higher order affect to be transformed into purchase intentions, even as purchase commitment increases. When affect is higher order, the attitude model performs reasonably well.

Correlations between lower order affect and trial intentions (H_{I_2}) are moderate (mean $r = .52$). This finding indicates that, despite some tendency for lower order affect to be transformed into trial, 70% of the variation in these trial intentions cannot be explained by attitude measures. According to the integrated model, this non-affect-related conative response is probably related to the information value of the trial experience. The lowest correlations in Table 5 are between lower order affect and committed intentions (mean $r = .43$). Here, consumers are unlikely to commit themselves to a non-preferred brand.

Similar results for the relationship between attitudes and actual behavior also are reported in Table 5. Once again A-B consistency is stronger for the higher order affect subjects (mean $r = .65$) than for the lower order affect subjects (mean $r = .39$). Because these results parallel those from the independent samples (Tables 3 and 4) it is reasonable to conclude that attitude strength and behavioral commitment participate in A-B consistency.

Though A-B consistency is normally examined at the aggregate level, individual-level analysis adds further evidence of the relationship between affective order and actual purchase behavior. The number of packages ordered (PUR) can be categorized to reflect the degree of subject commitment. Because the purchase of two packages at 20¢ each cost subjects about the same as one purchase at retail price (40¢ versus 35¢, respectively), purchases of one and two packages were labeled trial purchases. Because purchases of three or more packages appear to represent more than is needed for trial, these were labeled committed purchases. Figure 3 is a cross-classification of affective order and purchase category.

As expected, there is a statistically significant relationship between the type of behavior and affective order ($\chi^2 = 9.99$, d.f. = 4, $p < .05$). Four of the eight cells (lined) in Figure 3 are consistent with the hypotheses.
ATTITUDE-BEHAVIOR CONSISTENCY

generated from the integrated information response model. Those cells reflect subjects with higher order affect, who were hypothesized to "act the way they feel." Here, subjects with strong negative affect should not purchase the product (cell 3). Conversely, those with strong positive affect should be willing to purchase the product in amounts greater than needed for trial (cell 7). Subjects with lower order evaluations were hypothesized to have moderate A-B correlations because some subjects would be willing to purchase the product (on a trial basis) and others would not. Accordingly, trial purchase (cell 5) and no purchase (cell 6) are consistent with lower order evaluations. In total, 67% of the subjects are in the four predicted (lined) categories showing a high degree of A-B consistency when affective strength and type of behavior are taken into account.

The four unlined cells in Figure 3 represent response patterns not predicted by the integrated model. In cells 1, 2, and 4, subjects purchased more product than predicted; and in cells 8 and 9 they purchased less product than predicted. Situational factors of the types noted in Table 1 probably account for these unexpected patterns, including subject's orientation to trial, amount of money on hand, current diet commitments, recency of last meal, etc. Nevertheless, 67% of the subject pool acted in a fashion consistent with the integrated model's predictions.

DISCUSSION

This study examined factors relevant to the attitude-behavior consistency issue in promotional situations. Specifically, affective, conative, and behavioral responses were monitored after a direct/indirect experience treatment. Findings indicate that attitude development is significantly stronger for trial subjects in terms of both affective extremity and confidence. In addition, trial subjects showed higher levels of A-B consistency than did advertising subjects. Several implications relevant to attitude theory and research can be drawn from these findings. First, the level of A-B consistency for advertising subjects is similar to results commonly reported in the behavioral literature ($R^2 = 10\%$, Wicker 1969). This suggests that when experimental designs provide subjects with strictly verbal or indirect stimuli (a common research paradigm), the resulting affective development is often of lower order magnitude. In these cases, the attitude construct may not accurately reflect the decision process. Instead, choice may depend on cognitively based algorithms or heuristics (Bettman 1981) or informational goals (Smith and Swinyard 1982).

In contrast, A-B consistency scores for trial subjects were relatively high ($r^2 = .36$). These findings reaffirm those of Fazio and Zanna (1981) suggesting that the attitude model is appropriate when respondents have the benefit of direct experience with the target object. Thus, the frequently low A-B consistency scores reported in the literature do not necessarily mean that we should "abandon the attitude concept." Instead, many of these cases could be interpreted as an attempt to fit the attitude model to situations in which it is inappropriate. Thus a promising (though partial) answer to the question "When will consumer attitudes predict purchase?" is "When consumers have direct experience with the brand."

The A-B results for the trial group also suggest that reasonably high correlations can be found between general attitude measures (A_X) and specific conative and overt responses. This could be an important diversion from the growing trend to measure attitude or behavioral intentions by using highly specific models that have limited generality. It could be argued that it is not much help to the prediction of a purchase of Brand X at time t in store A if the attitude measure is how much the consumer would like to buy Brand X at time t in store A. Much of the appeal of the attitude concept is its ability to predict specific behaviors from general attitude measures.

The process by which trial generates higher order affect deserves more study. Our results suggest affective extremity and confidence play a role, but other factors such as clarity, persistence, resistance, accessibility, and salience (Fazio and Zanna 1981) may be involved. Another contributing factor may be the presence of "primary affect" (i.e., emotional response) that is physiological in nature. Zajonc (1980) and Zajonc and Markus (1982) suggest that attitudes contain primary affect as an important component. Such physiological participation seems much more likely when direct sensory experience (e.g., taste) is included in the individual's information base.

In addition to extending the direct/indirect experience paradigm to a promotional scenario, our experiment addresses some of the key issues proposed in the integrated information response model. Though the findings are supportive of the integrated model, they should be accepted with certain reservations. First, the product selected for study had specific features that made direct experience (e.g., taste) particularly relevant to product evaluations. Other products that are less conducive to evaluation by trial (e.g., motor oil, life insurance) would probably show different results. Second, the relevant target behavior for the selected product was a low cost (20$) purchase. Accordingly, the purchase measures obtained may somewhat inflated and may be different when the target behavior involves higher commitment. Though the intention to buy a case measure (B_{case}) is relevant, actual purchase of high cost products will require further study.

However, many product categories have characteristics similar to those of the product used here. For marketers of these products, the findings provide some new insights about marketing communication theory and practice. First, advertising appears unlikely to accomplish much of what we might like it to do. Sixty-four percent of the subjects exposed to advertising developed lower order affect that lacks the strength to direct committed intentions or purchase. Only 8% of the subjects
transformed advertising content into positive higher order affect. Thus, advertising does not seem to develop many strong attitudes, though the lower order evaluations it does develop may trigger a low cost purchase. These trial purchases appear to be based on the information value of direct experience rather than brand-related attitudes. Thus, the integrated model suggests advertising may provide the opportunity for attitudinal development through influencing trial purchases rather than forming higher order affect directly. This represents an alternative explanation for the "low-involvement" response sequence of cognition \rightarrow conation \rightarrow affect. According to the integrated model the conative response affected by advertising reflects trial intentions, not committed intentions. As purchase commitment increases, lower order evaluations quickly lose their ability to direct choice.

In contrast to advertising, direct experience is shown to be a powerful information source creating positive higher order affect in 43% of the subjects. For low cost products, trial is important because it represents a convenient method of product evaluation. For high cost products, trial is important because a committed purchase usually requires higher order affect. Here, product trial is an effective technique for creating the required confidently held evaluations. In application, marketers could encourage any number of possible evaluation behaviors, including using a sample of the product, asking the person who owns one, visiting a retail outlet for a demonstration, or seeking out other secondary information sources. The favorable effect of a direct experience does, of course, depend heavily on having a favorable product experience.

CONCLUSION

This study investigated the role of direct/indirect experience, attitude strength, and behavioral commitment in A-B consistency. Results show that these factors can interact to create situations in which attitudes do and do not mediate behavior. Further study of factors that moderate the A-B relationship could help researchers better specify the most appropriate behavioral model (i.e., attitudes, cognitive attribute comparison, heuristics, scripts, etc.). Such study would also help practitioners decide when attitudes should serve as the promotional objective and when they should not.

Further research is also needed to help specify when and how advertising can create higher order affective development. Fazio and Zanna (1981, p. 184) note that in some cases indirect experience may generate stronger affective response than direct experience. Discovering the circumstances under which this effect occurs would be particularly valuable for advertisers who must rely on indirect information sources. In general, our findings underscore the need for a better understanding of the factors that moderate attitude-behavior consistency in marketing situations.

REFERENCES

Fazio, R. H., Jeaw-mei Chen, Elizabeth C. McDonel, and Steven J. Sherman (1982), "Attitude Accessibility, Attitude-Behavior Consistency, and the Strength of the Object-
ATTITUDE-BEHAVIOR CONSISTENCY

